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ABSTRACT

We review the current state of research in autonomous mobile robots and
conclude that there is an inadequate basis for predicting the reliability and
behavior of robots operating in unengineered environments.  We present a
new approach to the study of autonomous mobile robot performance based
on formal statistical analysis of independently reproducible experiments
conducted on real robots.  Simulators serve as models rather than
experimental surrogates.  We demonstrate three new results: 1) Two
commonly used performance metrics (time and distance) are not as well
correlated as is often tacitly assumed.  2) The probability distributions of
these performance metrics are exponential rather than normal, and 3) a
modular, object-oriented simulation accurately predicts the behavior of the
real robot in a statistically significant manner.

1.  Introduction

There appears to be an unfortunate dichotomy in autonomous-mobile-robotics research
between theory and practice.  Published reports in this particular area of robotics seem to
fall largely into one of two categories: theoretical work with little or no experimental
verification (except, on occasion, in simulation), and anecdotal experimental results from
implemented systems with little or no formal theoretical foundation.  It is rare to find a
formal theoretical prediction verified (or refuted) by independently reproducible
experiments performed on a real robot.  It is even rarer to find such results supported by an
analysis of their statistical significance.  Control experiments are nearly unheard of.

For example, in a cursory survey of 44 papers in the mobile robotics track of the 1994
International Conference on Robotics and Engineering (track 5, excluding four papers on
legged robots) we found seventeen papers that describe work done on an actual mobile
robot [1-3,5,7,8,10-14,16,20-23,25].  Of these, only three reported quantitative results
from more than one experimental trial [2,3,5].  (A few papers claim to have produced such
results but do not actually report them, e.g. [22].)  Of these three, only one [5] deals
directly with autonomous control.  While such a shallow survey of the literature does not
prove anything, it is indicative that a problem exists.

This is not necessarily an indictment of the research community.  I have argued
elsewhere that this dichotomy between theory and practice in the study of autonomous
mobile robots is due to an inherent and unavoidable property of the problem: autonomous
mobile robots must interact with complex environments which have not been engineered
specifically for the robot.  Interactions with such environments are extremely difficult to
model because they are governed by an enormous number of independent variables [4].



In order to make the mathematics tractable, standard analytical approaches often
assume that most of these independent variables can be safely ignored (or at least that their
consideration can be deferred).  For example, there is a vast theoretical literature on the
path-planning problem, which is almost invariably posed as a purely geometrical problem
where the quality of a solution is measured in terms of path length (e.g. Latombe [15]).
Such formulations routinely ignore such factors as computational costs, sensor noise,
occlusions and resolution limits, and mechanical interactions between a robot and a
supporting surface, including friction and surface deformation.

Likewise, in order to make experimentation tractable, issues such as controlling for
extraneous effects and statistical significance of results are routinely ignored.  It is rare to
find a description of an experimental setup that is sufficiently detailed to allow the
experiment to be independently reproduced.  The choice of the number of experiments to
conduct is usually made on a purely ad hoc basis (reporting the result of a single
experimental trial is common), and control experiments and statistical analysis are all but
nonexistent.  (To quote Matthew Ginsberg, I myself am hardly innocent in this regard.)  As
a result there is a lot of passionate debate, but no objective basis for evaluating the relative
merits of different approaches to the problem of autonomous control.

We can no longer afford to sweep these issues under the rug.  In 1996 NASA will
launch an autonomous mobile robot to explore the surface of Mars.  This robot represents a
substantial expenditure of taxpayer money, and so it is important to accurately assess the
reliability of our control methodology before launch.  Furthermore, the harsh realities of the
Martian environment do not permit us the luxury of making arbitrary simplifying
assumptions in our theories, even if those assumptions appear intuitively plausible.
Reality, not theorems, is our ultimate arbiter of truth.

2.  Approach

Our approach is to treat the experimental study of mobile robots in the manner of a
natural science or an empirical engineering discipline.  The natural sciences (e.g. biology)
regularly study the interactions of systems that are as complex or more than the
environments mobile robots interact with.  It is usually impossible to model such complex
systems starting from first principles.  Instead, probability theory is used to model system
components as random processes.  Experiments are designed to measure sampling
distributions of the resulting random variables, and statistical methods are used to analyze
the results.

One important result of our work is that two commonly used performance metrics turn
out to have probability distributions that appear to be exponential rather than normal.  Most
of the standard techniques used in the natural sciences assume normal distributions.  We
will therefore be forced to rely on some non-traditional analysis methods, known as non-
parametric methods, which do not rely on the probability distribution having any particular
shape.

Although we will emphasize experimental results (we hope to describe our apparatus,
methods, and models in sufficient detail to allow independent replication), we will also
construct models of our robot systems.  These models will take the form of simulations.
The measure of our simulations, however, will be how well they predict real experimental
results, not whether they reflect a particular mathematical formalism.  This is an important
distinction.  In the mobile robot literature simulators are commonly used as experimental
testbeds to "demonstrate" the validity of mathematical models derived from first principles.
In our case, the simulator is the model, and the validation comes from experiments on a real
robot.



We also wish to highlight the process leading to our results, and to contrast that
process with current practice.  In our view, the current practice places emphasis on getting
things to work, resulting in the widespread use of iterative design interleaved with ad hoc
evaluation.  This approach often results in working systems, but it does not yield an
understanding of the limitations of these systems.  In particular, it provides little assurance
that a system will continue to operate when environmental parameters are changed.  This is
of particular concern to NASA because we cannot test our robot in the actual conditions
under which it will expected to operate (since, among other reasons, we do not know
exactly what those conditions will be).

Our approach therefore emphasizes reliable prediction of system performance.   We
intend our approach to complement the current practice rather than supplant it.  Ultimately
our goal is to build systems that work.  Reliable measurement of system performance is a
necessary component of the process, but cannot replace the current iterative design
methodologies, which we continue to advocate.

3.  Apparatus

The robot under study is Rocky 3.2 [18], a rebuilt version of Rocky 3 [6].  This robot
has essentially the same chassis design, size, computer and sensor suite as those designed
for the actual flight rover, which is known as the MFEX (Mars Flight EXperiment) rover.
(See figure 1.)  Both rovers are six-wheel rocker-bogie type vehicles.  Each has an 8085
processor with 1/4 megabyte of bank-switched RAM, most of which is used to hold image
data.  The rover is programmed in C and 8085 assembly language.  The main differences
between the two vehicles are that Rocky 3.2 weighs 20 kg, about twice as much as the
flight rover, uses rubber instead of metal tires, and lacks some of the contact and motor
current sensors planned for the flight rover.

The primary sensor on the robot is a structured-light range sensor, comprising five
laser diodes each equipped with a cylindrical lens, and a pair of stereo cameras.  The
camera data is clocked out and captured in software by the 8085, using a scheme similar to
that used by Horswill and Yamamoto [9].  The data is processed to produce a 5x4 array of
range measurements, which undergo a coordinate transformation to become a 5x4 array of
height measurements.  Adjacent height measurements are compared, and if the difference
exceeds a threshold, that area is assumed to be untraversable.  The effectiveness of this
sensor and data processing scheme is under separate study.  The rover also has articulation
sensors and inclinometers, but these were not used in the work described here.

The rover also has wheel encoders and a rate gyroscope, which it uses to keep track of
its position through dead reckoning.  The rate gyroscope tends to drift, and the wheels slip
in loose soil, resulting in dead reckoning errors.  A preliminary analysis of these errors
appears in [18].

All experiments were performed indoors in a 4 m by 12 m sandbox filled with loose
sand and crushed red brick to simulate the reddish color of Martian soil.  (Using a better
Martian soil simulant is impractical because Mars soil contains sub-micron dust, which can
be toxic to humans if inhaled.)  The sandbox was instrumented with a tracking system
comprising four overhead CCD cameras, whose field of view covered 10 m of the
sandbox's length.  The rover was equipped with a visual target that could be easily
identified and located in the images.  The system was calibrated by comparing the readings
of the tracking system to ground-truth measurements obtained by placing the target at
reference locations.  The reference locations were marked by an array of strings stretched
between nails placed in the wooden side rails of the sandbox at 1 m intervals.  The results
showed that the system is accurate to within about 1 cm and 1 degree.  The overhead



tracking system was used only for gathering experimental data, and was not accessible to
the rover navigation software.

The sandbox was made as large as the available space would allow.  Unfortunately,
this turned out not be large enough.  Initial experiments revealed that the rover would often
approach the edges of the sandbox when avoiding obstacles.  The rover would then detect
the sandbox side rails as obstacles, which would affect the experimental results in
unrealistic ways (since long, straight obstacles like the side rails are unlikely to exist in
Mars).

To address this problem we implemented a "virtual sandbox" in the experiment
management software.  During a run if the rover came within 90 cm of an edge (as
measured by the overhead tracking system) the experiment manager program would
command the rover to stop and turn in place so that its heading was reflected about an axis
parallel to the edge of the sandbox.  The goal location was also reflected about this same
axis.  The net effect was to create a "virtual sandbox" adjacent to and a mirror image of the
original sandbox.  This reflection could be repeated to produce a sandbox of effectively
infinite size, but in practice only one reflection on either side of the physical sandbox has
been used to date.

This technique allows runs of unlimited length in a sandbox of finite size.  The
supervisory program keeps track of the rover's "virtual position", and issues the proper
commands whenever the rover nears an edge.  The main limitation of the method is that the
terrain in the "infinite" sandbox is just repeated mirror images of the terrain in the original
sandbox, and so the obstacle distributions in the virtual sandbox are not quite random.
Nevertheless, this is a useful technique for gathering data in an experimental area which is
not quite big enough by itself for realistic tests.

4.  Method

In our experiments the quantities that we measure are the values of two performance
metrics: traverse distance and elapsed time to reach a goal.  These are commonly used
metrics, but in fact the choice of these metrics is based more on convenience than on sound
theoretical considerations.  Time and distance are easy to measure.  There are many other
performance metrics we could have chosen, many of which affect the outcome of a mission
much more directly than time or distance (energy consumption, for example).  Many papers
on optimal path planning focus on a single performance metric, usually time or distance,
presumably on the tacit assumption that other performance metrics are more or less
correlated, and that if one optimizes, say, path length then traverse time, energy
consumption, etc. will also be optimized.  We will show that this assumption may not be
valid.  The present experiments could be improved by measuring energy consumption, but
we currently do not have the means to do so.

To conduct an experiment we first generate a test course by placing rocks of various
sizes in the sandbox.  The size and placement of these rocks is chosen according to a
published model of the rock distributions on Mars, to be described shortly.  We then
instruct the rover to travel from one end of the sandbox to the other, between two
predetermined locations that are 7.6 meters apart.  (This is the longest traverse that is
possible within the constraints imposed by the field of view of the overhead cameras.)  The
route that the rover takes is recorded by tracking the rover using the overhead cameras.
The rover's position and orientation are recorded at regular intervals, along with a time
stamp.  Occasionally the overhead tracking system will lose track of the rover and cause a
delay while the rover is reacquired.  The time stamps are corrected to account for this delay.

A test course is constructed by first choosing an obstacle density.  This density can be
chosen arbitrarily (for example, to study the effects of gradually increasing obstacle



densities on the performance of a particular navigation algorithm), or it can be chosen
according to the standard model of Martian terrain, developed by Moore [19].  According
to Moore's model, the number of rocks per square meter with a diameter less than or equal
to a given size D is:

N=kD-2.66 (1)

where k is a parameter that varies according to the particular location on the surface.  This
model is an empirical fit to the rock size distributions observed at the two Viking lander
sites.  It is accurate only for D > 14 cm, which is fortuitous since this is about the smallest
size rock that the laser ranging sensor will detect as an obstacle.  If one assumes that the
Moore model distribution holds over the entire planet, then thermal inertia data indicate that
the modal value of k for all of Mars is approximately 0.00415; this case is referred to as
"Mars-nominal" terrain.

Locations for obstacles are generated using a random number generator.  Rocks are
placed at the prescribed location using a tape measure.  Setting up a test course is time-
consuming work, so each course was used for four runs, two in each direction.  This also
allows some interesting statistical analysis to be done to determine, for example, how
repeatable (and thus how predictable) the rover's performance is in a given terrain.

The rover moves in discrete steps, where each step is either a turn in place or a
forward movement of approximately one wheel radius (7 cm).  After each step a
supervisory program running on an off-board workstation recorded the rover's position
and heading as computed by dead reckoning, the rover's absolute position, the state of the
rover's obstacle detectors, and a time stamp.  Datasets were indexed to records of the
terrain layout in which they were run.

5.  Results

The rover is quite slow, moving at an average speed of less than 1 cm/s.  Most of the
time is spent processing the data from the laser range finder.  We were able to complete a
total of about 100 runs over the course of a summer, of which 40 were performed in Mars-
nominal terrain.  The remainder were performed under a variety of other obstacle densities,
including zero obstacles as a control case.  (The zero-obstacle case was also used to
evaluate the rover's dead-reckoning performance [18].)

The raw data consisted of a complete record of the rover's path for each run.  We
reduced this data by computing two performance metrics for each run: total path length and
total traverse time (corrected for delays introduced by the overhead tracking system).

The reduced data for the Mars-nominal case are depicted as a scatter plot in figure 1.
Each point on the plot corresponds to one run.  The two axes represent the two different
performance metrics.  This figure illustrates our first result: path length and traverse time
are poorly correlated; the correlation coefficient is 0.69.  In this case the poor correlation is
easily explained by the fact that the rover occasionally turns in place as part of its navigation
strategy.  Nevertheless, these results show that optimizing path length on the tacit
assumption that other performance metrics will correlate may not be an effective strategy.

The cumulative distribution function for the reduced distance data is shown as the bold
line in figure 2.  (This figure shows the simulation results superimposed on the results
from the real robot — see section 6.  The distribution function for time looks virtually
identical, but with a different scale on the y-axis.)  This figure illustrates our second result:
the distribution functions are not normal.  In section 7 we will show that they are in fact



exponential (or, at least, that an exponential distribution is a good fit) but until we do this
we cannot assume any particular shape.  This will complicate our analysis somewhat
because most standard statistical methods assume a normal distribution.

There is to date insufficient data from the real robot in obstacle densities other than
Mars nominal to allow strong quantitative conclusions to be drawn.  As one would expect,
performance does appear to drop off as obstacle densities increase.  There is significant
degradation at densities above about one obstacle per square meter, which is cause for
some concern, since that is approximately the obstacle density expected at the MFEX
landing site.   See [18] for further discussion of these results.

6.  Simulation

We constructed a simulation of the rover to serve as a reference model for making
predictions about the rover's performance.  Because the design of the rover is evolving we
designed our simulation to be extremely flexible.  Our simulator is written in Common Lisp
using the Common Lisp Object System (CLOS) [24].  The code is object-oriented to an
extreme.  Everything in the simulator is a software object, including environments, objects
in the environment, robots, sensors and actuators.  Simulations are constructed by
"installing" robot objects and passive objects (e.g. obstacles) into a world object.  Robot
objects are constructed by installing sensor and actuator objects into a "robot chassis"
object.  The software is designed to make it easy for users to add new sensor and actuator
models, as well as new models of object interactions.  The simulator naturally supports
multiple-robot simulations; all that is required is to install more than one robot into the
world.

The only assumption imposed by the simulator itself is that all objects with physical
extent (e.g. robots, but not drive mechanisms) have that extent described by a two-
dimensional polygon.  (A three-dimensional model could be used if desired.)  The root
functionality provided by the simulator is simply efficient computation of polygon
intersections.  This may seem like a severe restriction, but in turns out to provide a
tremendous amount of power.  Furthermore, it does not preclude certain types of three-
dimensional modeling.  Because the interactions of objects can be defined by the user, it is
possible, for example, to make a "rough terrain" object, whose physical extent is the entire
world, and whose interactions with a robot are governed by a model of rough-terrain
traversal provided by the user.  However, we have found this to be unnecessary; a much
less sophisticated model is adequate for describing the behavior of our robot in the
relatively sparse obstacle fields in which we have conducted our experiments to date.

The particular model used for Rocky 3.2 was as follows:

Chassis:  The robot chassis was modeled as a simple rectangle the size of the robot's
footprint.  At first glance this might appear to be a considerable oversimplification, but in
fact the situation is not so serious.  The navigation system is designed to prevent the
robot's wheels from contacting any obstacles.  Because the wheels are located at the
perimeter of the robot's footprint it is extremely unlikely for the footprint to intersect an
obstacle without at least one wheel touching that obstacle.

Drive system: The real robot uses an Ackerman drive system that also allows the
three wheels on opposite sides of the chassis to be rotated in opposite directions, allowing
the vehicle to turn in place.  The drive mechanism can slip in loose soil.  The simulated
drive mechanism simply moved the robot according to the ideal kinematic model, and then
added random gaussian noise to the vehicle's final position and orientation.  The noise
parameters were calibrated to the values measured on the real robot in the zero-obstacle
experimental trials.



Rate gyro:  The rate gyro included an accumulated drift error model that incorporated
the observed increased error when the robot comes in contact with a rock [18].

Odometer:  The odometer on the real robot measures the position of the wheels and
so cannot detect when the wheels slip in loose soil.  The simulation odometer mimics this
behavior by recording the commanded distance traveled rather than the actual distance.  The
odometer data is combined with the rate gyro data to compute the simulated vehicle's dead-
reckoning position.

Laser range sensor:  The laser range sensor was modeled as a pair of simple
proximity sensors whose outlines were the effective coverage area of the actual sensor.
This simulates the behavior of the sensor after the raw range data is processed.  Developing
a more sophisticated model of this sensor is high on the list of potential enhancements to
the system.

Despite the relatively simple nature of this simulation it produces remarkably high
quality results.  Qualitatively, the behavior of the simulated rover is virtually
indistinguishable from that of the real one.  However, this sort of gestalt assessment is
precisely the sort of informal, anecdotal result that we have criticized so severely.  We
therefore now proceed to demonstrate formally that we have captured some of the relevant
aspects of the real rover's behavior in our simulator model.

We duplicated the sandbox experiment on the simulator in two separate sets of
experimental trials.  In the first set of trials we did 100 runs in each of nine different terrain
densities.  (A random field of obstacles was generated for each run, so there were a total of
900 different obstacle fields used.)  The results from these trials (excluding failures — see
section 7.4) are shown in figure 2 as cumulative probability distributions.  The results from
the real robot are superimposed as a bold line.  The Moore-model parameter ranges from
0.00015 to 0.00815 in even increments of 0.001.

In the second set of simulator trials we ran 804 runs using a Moore model parameter of
0.006.  (See section 7.4 for an explanation of the apparent discrepancy between this and
the value of 0.00415 used for the real experiments.)  The results of these runs (again
excluding failures) are shown in figure 3, superimposed with the real data and a best-fit
exponential curve.  By visual inspection, the fit of all three curves appears to be quite good.
Selected results when failures are not excluded are shown in figure 4.  As usual, the real
data are superimposed as a bold line.  The results do not match the real data nearly as well,
indicating that the simulator's emergent failure model may be flawed.

In the next section we will formally analyze these informal observations.

7.  Analysis

To draw conclusions about our data we employ statistical tests.  There are a number of
subtle issues in the use of statistical tests and in the interpretation of their results which are
not common knowledge among mobile robotics researchers.  It is therefore worthwhile to
digress for a moment to discuss statistical tests in general before returning to the analysis of
our data.  A reader familiar with statistical methods should feel free to skip to section 7.2.

7.1  Digression: On the nature of statistical tests

Statistical analysis is related to probability theory in that both deal with phenomena
that, by assumption, contain elements that are unmodelable a priori.  However, unlike pure
probability theory, which attempts to derive probabilities from first principles, statistics
deals with the problem of drawing conclusions about probability distributions by
examining sets of data points drawn from those distributions.



In general, a statistical analysis proceeds as follows: given a set D of samples drawn
from a probability distribution P, a computation is performed on the elements of D (of
which there may be any number) which yields a single result S.  This result is called a
statistic.  (The word is also used to refer to the computation that produced S.)  The familiar
mean, median, mode and variance are all examples of statistics, but in general any function
from sets onto scalars can serve to produce a statistic.

Statistics are themselves random variables; a statistic computed on two separate sets of
samples drawn from one distribution will generally not yield the same value.  However,
certain statistics can be shown to have probability distributions that, under certain
conditions — the so-called null-hypothesis conditions — are independent of the underlying
distribution P which generated the datasets on which the statistic is computed.  If S turns
out to have a value which is very unlikely under these conditions we can confidently reject
the null hypothesis, i.e. conclude that the conditions under which the distribution of S is
known do not hold.

It is important to note that the converse reasoning is faulty.  If the value of S is a likely
one it does not follow that the null-hypothesis conditions are true.  It is possible that the
null hypothesis is false, but in a way that does not alter the distribution of S.  Lack of
evidence that a hypothesis H is false is not the same as evidence that H is true.

7.2  Analysis 1: exponential distribution

We wish to formally test the hypothesis that the data generated by the real robot and
the simulator are drawn from exponential distributions.  To do this we employ the Smirnov
statistic [17] (sometimes called the Kolmogorov-Smirnov statistic), defined as:

KS = Maxx(|F(x) - D(x)|)

where F and D are cumulative probability distributions.  When F and D are the same (the
null hypothesis condition) the distribution of KS is independent of that of F and D.  The
Smirnov statistic can be used either to compare two sampling distributions (in which case
the null distribution of KS depends on the number of data points in each of the two
samples) or it can be used to compare a sampling distribution with an a priori closed-form
expression.  Here we will use the second method.

When we test the hypothesis that the cumulative distribution functions for our data are
of the form:

P(x) = 1-e-k(x-x
0
)

where x is the random variable (distance or time in this case), x0 is the smallest value of x,
and k is a parameter chosen for best fit.  For distance, the best fit value of k is 0.4, and for
time the best fit value of k is 0.0014, yielding values of KS of 0.11 and 0.12 respectively.
(The best-fit exponential curve for distance is shown in figure 3 along with the real distance
data and the results of the second set of simulator runs.)

For n=40 (the number of data points) the null-distribution probabilities of the above
values of KS are 0.68 and 0.60, i.e. the value of KS is expected to be at least as large as
the observed values 68% and 60% of the time for sets of 40 data points drawn from the
hypothesized distributions.  Thus, there is no basis for rejecting the null hypothesis.  (Even
better fits are possible if we choose x0 to be a value slightly less than the smallest observed



values.)  Note that this does not mean that the distributions are exponential, just that we
can't distinguish any differences that there might be on the basis of the data we have.

By way of contrast, if we test the hypothesis that the distributions are normal with
mean and variance equal to the sampling means and variances of the two datasets, we
obtain values of KS of 0.23 for distance and 0.18 for time.  The corresponding null-
distribution probabilities for 40 data points are 0.025 and 0.13.  Thus we can conclude
with better than 95% confidence that the distribution for distance is not normal, and better
than 85% confidence1 that the distribution for time is not normal.

7.3  Analysis 2: comparison of simulated and real results

To test the second hypothesis we have three options.  First, if we assume that the
distributions are exponential we could employ a parametric analysis and estimation theory
to derive a numerical solution (with error bounds) for the distribution functions and
compare them.  However, the evidence that they are in fact exponential is pretty thin, and
such an assumption could lead us seriously astray.  The second alternative is to use the
discrete form of the Kolmogorov-Smirnov test to compare them.  The third alternative is to
employ a different test altogether.  It turns out that for comparing two sampling
distributions there are better methods available.  We will use a statistic advocated by
Lehmann [17], the Wilcoxon-Mann-Whitney (WMW) statistic.

The WMW statistic is computed as follows.  Let D1 and D2 be sets of m and n data
points drawn respectively from probability distributions P1 and P2.  The data in D1 and D2
are combined and sorted.  Each datum is then ranked according to its position in the sorted
list; the first number in the list is assigned the rank 1, the second number the rank 2, etc.
The ranks are then separated according to which distribution (D1 or D2) its corresponding
datum was drawn from.  The separated lists of ranks are then summed to produce two
numbers, S1 and S2.

It can be shown that if P1 and P2 are the same, then S1 and S2 have normal
probability distributions whose parameters are independent of P1 and P2.  Instead, the
parameters depend on the number of data points, m and n:

E(S1) = n(m+n+1)/2

E(S2) = m(m+n+1)/2

Var(S1) = Var(S2) = mn(m+n+1)/12

where E(X) denotes the expected value (mean) of a random variable X, and Var(x) denotes
its variance.  Because the variances are the same, the quantity:

S = S1-n(m+n+1)/2 = S2-m(m+n+1)/2

is sometimes used instead of S1 and S2.  The variance of S is the same as that of S1 and
S2, and the mean of S is, of course, zero.

                                                
1Usually, a confidence level of at least 90% is required for a result to be considered

statistically significant.  A requirement of 95% confidence is common in many fields.



Since we know that if P1 and P2 are the same then S is drawn from a normal
distribution with known variance, any large deviation (relative to the variance) of S away
from zero can be taken as evidence that P1 and P2 are different.  If we compute:

p = |Φ(S) - Φ(-S)|

= 2Φ(|S|)-1

where Φ is the error function (i.e. the integral of the normal distribution), the result is the
probability that the magnitude of a sample from the null distribution of S (i.e. when
P1=P2) is less than or equal to the observed value S.  So, for example, if p=0.95 then
there is a 95% probability that P1 and P2 are different, and only a 5% probability that P1
and P2 are the same, and that the observed value of S is due to chance.

We compared the data generated on the real rover with that generated on the second set
of simulator experiments.  When failures are ignored, the resulting value of p is 0.056 and
0.088 for distance and time respectively, indicating an excellent fit.  (The value of p would
need to be 0.90 to reject the null hypothesis.)  The Smirnov probabilities for the same
datasets are both greater than 99%, illustrating that the WMW test is more sensitive to
differences than the Smirnov test.

7.4  Failures

Throughout the analysis we have been ignoring failures produced by the simulator.  If
failures are not ignored, the data produced by the simulator does not match the real robot
data, indicating that the simulator's failure model is faulty.  We do not have enough failure
data from the real robot to properly calibrate the simulator's failure model, so we have
made no attempt to correct the situation.  Instead, we use this mismatch to our advantage to
illustrate how our statistical procedures can detect faulty models.

Figure 4 show the distance data from the sets of three simulator runs with the best fits
to the real data when failures are ignored.  In this figure failures are treated as infinite
distances (presumably, taking an infinitely long path to the goal is tantamount to failure),
and it is clear that the match is not nearly as good as before.

Using the WMW test, the value of p for the lower curve (804 simulator runs, 175 of
which were failures) is 0.98, indicating a highly statistically significant difference.  The
value of p for the other two curves are 0.62 and 0.64, which is not quite high enough to
confidently reject the fit.  (The fact that these curves have a better fit is due to the fact that
the failure model was adjusted for these runs.)  We would need about four times as much
data from the real robot to distinguish the second two simulator distributions from the real
distribution with 95% confidence, assuming that the results are reproducible.  (This result
was obtained by computing p for datasets consisting of multiple copies of the real data.)
We are currently beginning experiments to gather this data.

Finally, although we have not yet culminated our research by verifying a statistical
prediction made by our model, we have made one very interesting postdiction2.  The best

                                                
2This is a postdiction rather than a prediction because the result was obtained after the

experiment was completed.  Experimental data collected before the formulation of a
hypothesis is weaker evidence for that hypothesis than data collected afterwards.  Thus, a
postdiction is not as interesting as a verified prediction.  However, in this case the



fit of the simulator data and the real data is obtained when the Moore model parameter in the
simulator is set to approximately 0.006.  However, the value of the parameter in the real
experiments was 0.00415, the Mars Nominal value.  This mismatch caused some
consternation until it was discovered that the minimum rock diameter, D0, in the real
experiments was set to 10 cm rather than 14 as in the simulator.  Moore's model is very
sensitive to the value of D0 in the 10-15 cm range, and this difference resulted in enough
additional obstacles to make the overall obstacle density approximately the same as the
simulator.  (Actually, there were about twice as many small rocks as there should have
been, but about half of those were ignored by the robot's perception system.)

8.  Conclusions and Future Work

We are working towards rigorous experimental study of autonomous mobile robots.
Our approach is to employ the methods of the natural sciences in our investigations.  We
use simulations, but we treat them as models rather than as the system under study.  The
value of a simulation is measured by how well it predicts the behavior of a physical system.
We use statistical methods to evaluate our experimental data.

To date we have carried out only a portion of our research program.  We have
constructed a simulation and verified that it postdicts the behavior of a real robot in a
statistically meaningful way.  We have also used the simulator to generate predictions about
the behavior of the rover under conditions in which it has never been tested.  The final step
of our research, to be completed this summer, is to test these predictions by performing a
second series of experiments.

Our work offers two central contributions.  We offer the first solid experimental
evidence that certain performance metrics, often tacitly assumed to be well correlated, can
in fact be highly uncorrelated in practice.  In retrospect this is fairly obvious; nevertheless,
it is a fact often ignored in the literature.

Our second contribution is the introduction of statistical rigor to the evaluation of
experimental results.  We have presented what is to our knowledge the first statistically
significant result in the field of autonomous mobile robots, namely that the probability
distributions on certain performance metrics under certain conditions are not normally
distributed.  We used non-parametric methods for comparing probability distribution
functions.  This allows us to draw quantitative conclusions about the probabilities of certain
events without knowing a priori the shape of the probability distribution.

We would like to see these results independently verified by other researchers.  If the
shapes of the distributions on a variety of standardized tests can be conclusively established
then we can transition to more powerful parametric analysis methods in comparative
studies.  Furthermore, if it can be established with statistical rigor that a standardized
simulation is indeed an accurate model of a class of physical robots then the current
ongoing debate about the value of simulation results would be settled, and the cost of
conducting comparative studies of control methodologies could be dramatically reduced.
However, before this can be achieved a much larger corpus of experimental data gathered
under a variety of carefully controlled conditions needs to be established.

A complimentary line of research is to develop a mathematical theory to explain the
observed shapes of the probability distribution functions for the performance metrics we
have chosen.  They appear to be exponential, indicating that rover navigation in rough
terrain is a Poisson process.  However, it can be argued on theoretical grounds that rover

                                                                                                                                         
postdiction showed that what we thought was a negative result was, in fact, a positive one
by predicting a mistaken assumption in our analysis.



navigation cannot be a Poisson process because of the non-independence of obstacle
encounters and the form of the termination condition.  A diffusion process might be a better
model.  Arguments can also be made that the expected probability distributions should be
two-tailed distributions (such as a chi-square), especially in denser terrains.  (We have
collected some preliminary data that indicate that this is not the case; even in very dense
terrain the exponential distribution appears to persist.)

Finally, we also need to combine the present analysis with a similar probabilistic
analysis of the performance of the robot's lookahead sensor.  Measuring the performance
of the lookahead sensor is currently in progress.
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Figure 1:  Scatter plot of elapsed time and distance travelled
for forty runs of the real robot in Mars-nominal terrain.
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Figure 2:  Cumulative probability distributions of the distance
metric for a goal 7.6 meters from the starting location at
various obstacle densities, superimposed on data from the real
robot (bold line).  The curve furthest to the left is for a Moore
model parameter of 0.00015, and each successive curve
increments this value by 0.001.
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Figure 3:  Comparisons of three cumulative probability
functions for distance: 40 data points from the real rover, 629
data points from the simulator, and an exponential curve.
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Figure 4: Simulator results when failures are not ignored for
Moore parameters of 0.00415, 0.00515 and 0.00615,
superimposed on the data from the real robot (bold line).


